1. 怎样预测票房
票房预测:需求与现实
从1896年西洋影戏传入上海徐园,到1905年中国拍摄首部国产电影《定军山》,再到2013年全国电影票房突破200亿
大关,(4)有着百余年历史的中国电影产业,在近几年呈现出飞跃式发展的态势,无论是影片质量、院线建设还是投资规模都有了长足的发展。与此同时,随着
“大数据”时代的到来,电影观影群体、观影偏好与心理、电影信息传播和获取方式也都在发生着深刻的变化。
毋庸置疑,多样化资本的加入是中国电影不可或缺的发展引擎,然而,电影行业以投资回报率难以预测著称,大投入未必有大产出,票房预测工具的缺失使得投资者
无法有效对冲投资风险,华人著名导演吴宇森的《风语者》就拖累了米高梅公司最终走向破产。因此制作与发行公司不得不考虑所有对票房有影响的因素:辣妈李小
璐对《私人订制》票房贡献几何;《风暴》票房为何远低于其金牌制片人江志强预期;被吐槽“烂片”的《富山春居图》和《小时代》缘何票房却一路走红;成龙大
叔的《警察故事2013》有无必要拍成3D;《泰囧》的“报复性”观影效应能否复现……这一切的一切其实都可以从“大数据”中找到答案。因为网络上的每一
次浏览、查询乃至点击所汇聚成的群体智慧都“蝴蝶效应”般地影响着电影的最终票房。
2013年Google在一份名为《Quantifying Movie Magic with Google Search》(5)
的白皮书中公布了其电影票房预测模型,该模型主要利用搜索、广告点击数据以及院线排片来预测票房,Google宣布其模型预测票房与真实票房的吻合程度达
到了94%,但并未见其公开对未上映电影的预测结果。
搜狗公司借助“深思”系统,建立了更为复杂的模型,用于预测国内电影票房,并在新浪微博上提前发布了2013年12月国内上映电影的首周票房预测结果。很高兴到目前为止预测结果与真实数据非常接近,同时,我们的模型还可以用于对影响票房的因素进行定量分析。
搜索查询量的奥秘
搜狗搜索每天都响应上亿次的搜索请求,查询词的分布和变化趋势能够很好的反映出中国网民的兴趣点和关注指向。与Google的研究类似,我们也发现,电影
上映前相关查询词的搜索次数与票房收入有着很强的关联性。这一点很好理解,用户的主动搜索行为体现了用户对这部电影的潜在兴趣。
我们选取了2013年1-11月国内上映的180部电影的票房和上映前的搜索量数据作为训练集,用于训练一个基础的线性回归模型。实验发现,单纯利用搜索
量训练得到的模型,预测得到的首周票房与真实票房的相关度R方值仅为68%,这与Google仅用搜索数据得到的结果70%很接近。(注:R方值取值为0
至1,值越大表示模型预测效果越好),这个结果也说明无论在中国还是美国,用户的搜索行为是很相似的。
用搜索量来进行预测票房是一个好的开始,但是准确度还远远不够。同时很多搜索词还存在歧义的情况,比如《生化危机》,既是电影也是游戏,混在一起会造成票
房预测值偏高。进一步研究发现,游戏意图的查询请求量较为平稳,但电影意图的查询请求在上映前则有一个高峰,也可以通过用户点击的URL来进一步确认用户
的搜索意图。因此模型需要再引入查询量的变化趋势和用户点击的分布情况。修正后的模型可以达到74%的准确度,这时模型已经可以对电影票房进行一个粗略的
估计。
社交媒体:用户的情感分析
社交媒体数据对票房预测也会有一定帮助。假设你是某个明星的粉丝,打算去看他主演的电影,那么你很可能会提前转发该电影的相关微博给你的朋友。国外已经有
很多预测项目都是在针对Twitter数据做研究,这里我们主要采用国内部分微博网站的数据来进行预测。通过自然语言理解技术,分析出用户对未上映影片的
情感倾向,从而转换为用户的观影需求。进一步可以考虑的因素包括微博转发深度、评论活跃程度,以及相关微博数量随电影上映日期临近的变化趋势,这些数据都
可以被有效的提炼为特征并加入到模型中。
微博数据的加入使得准确率超过了80%。
结语
预测专家纳特·西尔弗在《信号与噪声:大数据时代预测的科学与艺术》一书中提到,大数据时代的预测更容易失败,大部分失败的预测都源于一种盲目的自信,用精确的预测来冒充准确的预测。
对此我们有着清醒的认识,目前的票房预测模型还有若干需要改进的方向。首先,目前模型的主要思想是通过电影上映前的用户关注度来推算首周票房,这实际上没
有考虑电影上映后的口碑对票房的影响;其次,模型较为依赖历史数据,可能难以识别一些上映后脱颖而出的小成本“黑马”电影;再次,目前的技术只能提前10
天预报出首周票房,还可以更加超前。
总体而言,“深思”系统代表了搜狗公司在社会化预测方面一些新的尝试。我们试着从繁杂的海量数据中筛选出真正的信号,努力穿越不确定性的迷雾,区分出未来
图景的哪些部分可以预测,哪些不可预测。通向这个未来的道路还在探索之中,但目前工作已经取得了一些不错的进展,并给予了我们更大的信心。