A. 初学R语言需要用什么书比较好~怎么学R语言
首先R是一种专业性很强的统计语言,如果想学得快一些的话,基本的统计学知识要懂,不然很多东西会掌握的比较慢。
掌握基本语法和操作,推荐国内的已经翻译的比如《R语言实战》《R语言编程艺术》,这个过程中最好结合一些小例子来做一些分析的东西。其他还有《R语言实例》《R语言核心技术手册》也都是很好的书!如果需要可视化的话,强烈不推荐学习R本身的作图系统,实在是太不友好了.....还是用ggplot2吧。
掌握了上面的,就可以深入一些了,如果是做数据分析和可视化,推荐《ggplot2:数据分析与图形艺术》,这个才是作图的神器啊.....如果是空间分析相关的,推荐《Applied Spatial Data Analysis with R》,这个如果可以的话看英文版,而且要有地学的一些知识背景,中文版翻译的太次了,尽量不要看。数据挖掘机器学习之类的,可以看看比如《数据挖掘与R语言》、《机器学习——实用案例解析》,不过我觉得这几本书没上面的那几本好,但是可以大概看看是咋回事,最好还是看看专门的相关书籍,熟悉各种算法和流程,到时候搜索R的package,照着文档和例子搞定,不是特别难。
最后,强烈推荐统计之都、R-bloggers,统计之都以及谢益辉、肖凯、刘思喆等人的博客(自行Google以及到上面的网站找链接),订阅一下,会很有帮助,RStudio是个很棒的IDE,用起来很爽,功能很强大。
总之,你可以从《R语言实战》开始出发吧!
B. 学IT的,写了一个电影推荐系统,但是为什么评分预测值大于五
全文以“预测电影评分”例子展开
r(i,j)=0则表明user_j没有对movie_i 没有评分,
推荐系统要做的就是通过预测user_j对这些movie {i|r(i,j)=0}的评分来给user_j 推荐其可能会喜欢的电影<预测评分较高的movie>
=======================================二、基于内容的推荐=======================================
对每个movie_i引入特征x(i)=(x1, x2),这种特征可能表明user对movie类型的偏好:浪漫or动作等
对于每个user引入一个参数theta,然后对评分矩阵的每列(对应一个user)做线性回归,数据是{ (x(i), y(i,j)) |r(i,j)=1,for some j all i}
像机器学习一样,x(i)添加个1变量x(i)=(1, x1, x2)
那么对于未评分的movie_t,我们可以使用线性回归训练的参数theta与对应特征x(t)做内积来得到其预测评分
对每个用户都训练一个参数theta_j,优化模型如下:
优化算法:注意正则项是不约束x(i)=(1, x1, x2)中1对应的参数theta的第一项theta0,所以k=0与k=1,2分别对待
=======================================三、协同过滤=======================================
现在换个角度:如果知道theta for all user j,如何来预测x(i) = (x1, x2) all i
仍然可以使用线性回归,为训练每个x(i),需要评分矩阵的第i行数据{ (x(i), y(i,j)) |r(i,j)=1,for some i all j}
theta_j = (0, theta1, theta2) ;theta1=5说明user_j喜欢romance类movie, theta2=5说明user_j喜欢action类movie,只能有一个等于5哦,
我觉得也可以是:theta_j = (0, 4, 1) ;喜欢romance 4 action 1.
对应的优化:
协同过滤:交替优化theta与x
=========================================四、协同过滤算法=======================================
优化:
优化:注意去掉了theta和x的添加项
=========================================五、实现细节补充=======================================
实现细节:
如果有user没有对任何电影评分或者所有评分的电影都是0分,那么所学习到的参数是零向量,
则预测都是0值,这是不合理的。通过 将评分矩阵减去其行均值再进行线性回归来“避免”这种情况
=========================================六、一点思考==========================================
协同过滤那块,同时优化theta、x,这样得到的theta、x还有特定的意义<比如:x是否还表征对影视类型的喜爱与否>没有?
回归中,在x数据上不添加1-feature是不是因为后来引入的平均值化;如果不是,那会对结果有什么影响?
用x-feature来表征一个movie,x-feature的各分量的可解释性;应该会有一部分user应为演员的缘故有一些"偏爱"。
这里,讲的"基于内容的推荐"与"协同过滤"跟以前对这两个词的认识/所指内容不同,查清楚、搞明白。
这周还会再更一篇关于此节课的算法实现,会对上述部分问题做出回答。
C. R语言的编辑器有哪些哪个比较好
《R语言4.0.4软件》网络网盘资源免费下载:
链接: https://pan..com/s/160twe4ScMvIbGm2TI_sjHw
R语言4.0.4是一款专业的统计建模软件,与其它建模软件不同的是这款软件完全免费、开源,所以深受大家的青睐。R软件拥有数据存储和处理系统;数组运算工具(其向量、矩阵运算方面功能尤其强大);完整连贯的统计分析工具;优秀的统计制图等多种功能,主要用于统计分析、绘图、数据挖掘。标准的安装文件身自身就带有许多模块和内嵌统计函数,安装好后可以直接实现许多常用的统计功能。
D. 大数据培训到底是培训什么
一、基础部分:JAVA语言 和 LINUX系统
二、数据开发:
1、数据分析与挖掘
一般工作包括数据清洗,执行分析和数据可视化。学习Python、数据库、网络爬虫、数据分析与处理等。
大数据培训一般是指大数据开发培训。
大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。
2、大数据开发
数据工程师建设和优化系统。学习hadoop、spark、storm、超大集群调优、机器学习、Docker容器引擎、ElasticSearch、并发编程等;
课程学习一共分为六个阶段:
7